Advanced Mathematical Statistics (I), 2022 Assignment 4

Due: 12/31 23:59

Problem 1.

(a) Let $(\xi_i)_{1 \leqslant i \leqslant n}$ be a random sample with finite means and variances, and $\mathbb{E}(\xi_1^{-1})$ exists, does $(n^{-1}\sum_{i=1}^n \xi_i^{-1})^{-1}$ converge almost surely? If so, to what?

(b) Consider ξ_n is a random variable from the binomial distribution $Bin(n, \theta)$, where $\theta \in (0, 1)$. Let

$$Y_n := \begin{cases} \log(\xi_n/n), & \xi_n \geqslant 1 \\ 1, & \xi_n = 0. \end{cases}$$

Show that Y_n converges to $\log \theta$ almost surely, and find the limiting distribution of

$$\sqrt{n}(Y_n - \log \theta) \xrightarrow{d} ?$$

(c) Let $(\xi_i)_{1\leqslant i\leqslant n}$ be a random sample from the uniform distribution on the interval $(\theta-1/2,\theta+1/2)$, where $\theta\in\mathbb{R}$ is unknown. Let $X_{(k)}$ be the kth order statistic of $(\xi_i)_{1\leqslant i\leqslant n}$. Show that $(X_{(1)}+X_{(n)})/2$ converges to θ almost surely.

Solution:

(a) Yes. By strong law of large numbers (SLLN), $\mathfrak{n}^{-1} \sum_{i=1}^{\mathfrak{n}} \xi_i^{-1} \xrightarrow{\mathfrak{a.s.}} \mathbb{E}(\xi_i^{-1})$, and by continuous mapping theorem (CMT), we have $(\mathfrak{n}^{-1} \sum_{i=1}^{\mathfrak{n}} \xi_i^{-1})^{-1} \xrightarrow{\mathfrak{a.s.}} \mathbb{E}(\xi_i^{-1})^{-1}$.

(b) Since that ξ_n can be decomposed by $\sum_{j=1}^n X_j$, where (X_j) are i.i.d. distributed with $\mathbb{P}(X_1 = 1) = \theta$ and $\mathbb{P}(X_1 = 0) = 1 - \theta$. By SLLN,

$$\xi_n/n = (\xi_n/n)\mathbf{I}(\xi_n \neq 0) + (\xi_n/n)\mathbf{I}(\xi_n = 0) \xrightarrow{a.s.} \theta + 0 = \theta, \text{ as } n \to \infty;$$

Then, the desired result follows from the CMT immediately by the continuity of the log function on $(0, \infty)$,

$$Y_n \stackrel{\text{a.s.}}{\longrightarrow} \log \theta, \mathrm{as} \ n \to \infty.$$

By CLT, and the delta-method with $g(t) = \log t$ and $g'(t) = t^{-1}$,

$$\begin{split} \sqrt{n}(Y_n - \log \theta) &= \sqrt{n}(\log(\xi_n/n)\mathbf{I}(\xi_n \neq 0) - \log \theta) \\ &\stackrel{d}{\longrightarrow} \mathcal{N}(0, q'(\theta)^2\theta(1-\theta)) \stackrel{d}{=} \mathcal{N}(0, (1-\theta)/\theta), \text{ as } n \to \infty. \end{split}$$

(c) For given any $\epsilon > 0$,

$$\mathbb{P}(|X_{(1)} - (\theta - 1/2)| > \epsilon) = \mathbb{P}(X_{(1)} > \epsilon + (\theta - 1/2)) = \mathbb{P}(X_1 > \epsilon + \theta - 1/2)^n = (1 - \epsilon)^n,$$

and similarly,

$$\mathbb{P}(|X_{(n)} - (\theta + 1/2)| > \epsilon) = (1 - \epsilon)^{n}.$$

Since that $\sum_{n=1}^{\infty} (1-\epsilon)^n < \infty$, we have that $X_{(1)} \xrightarrow{a.s.} (\theta - 1/2)$ and $X_{(n)} \xrightarrow{a.s.} (\theta + 1/2)$ by Borel-Cantelli lemma. Thus, $(X_{(1)} + X_{(n)})/2 \xrightarrow{a.s.} \theta$ by CMT.

Problem 2.

Let $(Y_n)_{n\geqslant 1}$ be a sequence of independent and identically distributed random variables with mean $\mathbb{E} Y_1 = \mu$ and finite variances $\mathrm{Var}(Y_1) = \sigma^2$. Define $(X_n)_{n\geqslant 2}$ as

$$X_n := \frac{Y_1Y_2 + Y_2Y_3 + \ldots + Y_{n-1}Y_n + Y_nY_1}{n}, \ n = 2, 3, \ldots$$

Show that X_n converges to μ^2 in probability.

Solution: Let $Z_i := Y_i Y_{i+1}$, i = 1, ..., n-1, $Z_n := Y_n Y_1$. Then,

$$X_n = \frac{1}{n} \sum_{i=1}^n Z_i.$$

Since that $\mathbb{E} Z_1 = \mathbb{E} Y_1 \mathbb{E} Y_2 = \mu^2$, $Var(Z_1) = \mathbb{E} (Y_1^2 Y_2^2) - (\mathbb{E} Y_1 Y_2)^2 = \sigma^4 + 2\sigma^2 \mu^2$, and $cov(Z_1, Z_2) = \mathbb{E} [Y_1 Y_2^2 Y_3] - \mathbb{E} [Y_1 Y_2] \mathbb{E} [Y_2 Y_3] = \mu^2 (\mu^2 + \sigma^2) - \mu^4 = \mu^2 \sigma^2$.

$$\begin{split} \mathop{\mathrm{I\!E}} X_n &= \frac{\mathop{\mathrm{I\!E}} Z_1 + \mathop{\mathrm{I\!E}} Z_2 + \ldots + \mathop{\mathrm{I\!E}} Z_{n-1} + \mathop{\mathrm{I\!E}} Z_n}{n} \\ &= \frac{n\mu^2}{n} = \mu^2, \end{split}$$

and

$$\begin{split} \operatorname{Var}(X_n) &= \frac{1}{n^2} \Big[n \operatorname{Var}(Z_1) + 2 \sum_{i < j} \operatorname{cov}(Z_i Z_j) \Big] \\ &= \frac{n(\sigma^4 + 2\sigma^2 \mu^2) + 2n\mu^2 \sigma^2}{n^2} = \frac{4\mu^2 \sigma^2 + \sigma^4}{n} \\ &\to 0, \text{ as } n \to \infty. \end{split}$$

Then, $X_n \to \mu^2$ in mean-squares sense, so that $X_n \xrightarrow{p} \mu^2$, as $n \to \infty$. (Or, using Chebyshev's inequality directly.)

Problem 3.

Consider an intercept-only model,

$$y_{\mathfrak{i}}=\mu+e_{\mathfrak{i}},\ e_{\mathfrak{i}}\sim\text{i.i.d.}\ \mathfrak{N}(0,\sigma^2),\ \sigma^2>0.$$

Define the sample skewness statistic as

$$\widehat{Sk} := \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\hat{e}_i}{\hat{\sigma}} \right)^3,$$

where $\hat{e}_i := y_i - \bar{y}$, i = 1, ..., n and $\hat{\sigma}^2 := \sum_{i=1}^n \hat{e}_i^2/n$. Please show that

$$\sqrt{n}\widehat{Sk} \xrightarrow{d} \mathcal{N}(0,6)$$
, as $n \to \infty$.

Solution: WLOG, assume $\sigma > 0$.

$$\begin{split} \hat{\sigma}^2 &= \sum_{i=1}^n \hat{e}_i^2/n \\ &= \sum_{i=1}^n e_i^2/n + 2 \sum_{i=1}^n e_i (\hat{e}_i - e_i)/n + \sum_{i=1}^n (\hat{e}_i - e_i)^2/n \\ &= \sum_{i=1}^n e_i^2/n - 2 \sum_{i=1}^n e_i (\bar{y} - \mu)/n + \sum_{i=1}^n (\bar{y} - \mu)^2/n \\ &\stackrel{\mathcal{D}}{\longrightarrow} \sigma^2 \end{split}$$

by the facts that $\sum_{i=1}^{n} e_i/n \xrightarrow{p} \mathbb{E} e_i = 0$, $\sum_{i=1}^{n} e_i^2/n \xrightarrow{p} \mathbb{E} e_i^2 = \sigma^2$, and $(\bar{y} - \mu) \xrightarrow{p} 0$ from WLLN. Then, $\hat{\sigma}^{-3} = (\hat{\sigma}^2)^{-3/2} \xrightarrow{p} (\sigma^2)^{-3/2} = \sigma^{-3}$ by continuous mapping theorem (CMT), and $\sqrt{nSk} = \hat{\sigma}^{-3}(\sum_{i=1}^{n} \hat{e}_i^3/\sqrt{n}) \xrightarrow{p} \sigma^{-3}(\sum_{i=1}^{n} \hat{e}_i^3/\sqrt{n})$. It leaves to show that $\sum_{i=1}^{n} \hat{e}_i^3/\sqrt{n} \xrightarrow{d} \mathcal{N}(0, 6\sigma^6)$, so that the desired result follows by Slutsky's theorem.

Claim. $\sum_{i=1}^{n} \hat{e}_i^3 / \sqrt{n} \stackrel{d}{\longrightarrow} \mathcal{N}(0, 6\sigma^6)$.

Since that $\hat{e}_i = e_i + (\hat{e}_i - e_i)$ and $\hat{e}_i - e_i = -(\bar{y} - \mu)$, then

$$\begin{split} \sum_{i=1}^{n} \hat{e}_{i}^{3} / \sqrt{n} &= \sum_{i=1}^{n} e_{i}^{3} / \sqrt{n} + 3 \sum_{i=1}^{n} e_{i}^{2} (\hat{e}_{i} - e_{i}) / \sqrt{n} + 3 \sum_{i=1}^{n} e_{i} (\hat{e}_{i} - e_{i})^{2} / \sqrt{n} + \sum_{i=1}^{n} (\hat{e}_{i} - e_{i})^{3} / \sqrt{n} \\ &=: \sum_{i=1}^{n} e_{i}^{3} / \sqrt{n} + (I) + (III), \end{split}$$

where (I) $\stackrel{p}{\longrightarrow} -3\sum_{i=1}^n \sigma^2 e_i/\sqrt{n}$ since

$$\begin{split} \sum_{i=1}^n e_i{}^2(\hat{e}_i-e_i)/\sqrt{n} &= -(\sum_{i=1}^n e_i^2/n) \Big[\sqrt{n}(\bar{y}-\mu) \Big] \\ &= -(\sum_{i=1}^n e_i^2/n) \Big[\sqrt{n}(\sum_{i=1}^n (y_i-\mu)/n) \Big] \\ &= -(\sum_{i=1}^n e_i^2/n) \sum_{i=1}^n e_i/\sqrt{n} \\ &\xrightarrow{p} -\sigma^2 \sum_{i=1}^n e_i/\sqrt{n} \end{split}$$

by $\sum_{i=1}^{n} e_i^2/n \xrightarrow{p} \mathbb{E} e_i^2 = \sigma^2$ from WLLN; (II) $\xrightarrow{p} 0$ since

$$\sum_{i=1}^{n} e_i (\hat{e}_i - e_i)^2 / \sqrt{n} = (\sum_{i=1}^{n} e_i / \sqrt{n}) (\bar{y} - \mu)^2 \stackrel{\mathcal{P}}{\longrightarrow} 0$$

by $(\bar{y} - \mu) \xrightarrow{p} 0$ from WLLN, and $\sum_{i=1}^{n} e_i / \sqrt{n} \xrightarrow{d} \mathcal{N}(0, \sigma^2)$ from CLT; and similarly, (III) $\xrightarrow{p} 0$ since

$$\sum_{i=1}^n (\hat{e}_i - e_i)^3/\sqrt{n} = \left[\sqrt{n}(\bar{y} - \mu)\right]^2 (\bar{y} - \mu)/\sqrt{n} \stackrel{p}{\longrightarrow} 0$$

by $1/\sqrt{n} \to 0$, $(\bar{y} - \mu) \xrightarrow{p} 0$ from WLLN, and $\sqrt{n}(\bar{y} - \mu) \xrightarrow{d} \mathcal{N}(0, \sigma^2)$ from CLT. Then,

$$\sum_{i=1}^n \hat{e}_i^3/\sqrt{n} \stackrel{p}{\longrightarrow} \sum_{i=1}^n (e_i^3 - 3\sigma^2 e_i)/\sqrt{n}.$$

Also,

$$\sum_{i=1}^{n} (e_i^3 - 3\sigma^2 e_i) / \sqrt{n} \stackrel{d}{\longrightarrow} \mathcal{N}(0, 6\sigma^6),$$

since $\mathbb{E}[e_i^3 - 3\sigma^2 e_i] = 0$, and by CLT,

$$\sum_{i=1}^{n} (e_i^3 - 3\sigma^2 e_i) / \sqrt{n} \xrightarrow{d} \mathcal{N}(0, V),$$

where $V = Var[e_i^3 - 3\sigma^2e_i] = \mathbb{E} e_i^6 - 6\sigma^2 \mathbb{E} e_i^4 + 9\sigma^4 \mathbb{E} e_i^2 = 15\sigma^6 - 18\sigma^6 + 9\sigma^6 = 6\sigma^6$. Hence,

$$\sum_{i=1}^{n} \hat{e}_{i}^{3} / \sqrt{n} \stackrel{d}{\longrightarrow} \mathcal{N}(0, 6\sigma^{6}).$$

We end the proof of Claim. Next, by Slutsky's theorem,

$$\begin{split} \sqrt{n}\widehat{Sk} &= \hat{\sigma}^{-3}(\sum_{i=1}^n \hat{e}_i^3/\sqrt{n}) \\ &\stackrel{d}{\longrightarrow} \sigma^{-3}\mathcal{N}(0,6\sigma^6) \stackrel{d}{=} \mathcal{N}(0,6), \text{ as } n \to \infty. \end{split}$$

We are done.

Problem 4.

Let $\{(X_i,Y_i)\}_{1\leqslant i\leqslant n}$ be a random sample from a bivariate normal density with correlation coefficient $\rho\in[0,1)$. We denote $r_n:=\sum_{i=1}^n(X_i-\bar{X})(Y_i-\bar{Y})/\sqrt{\sum_{i=1}^n(X_i-\bar{X})^2\sum_{i=1}^n(Y_i-\bar{Y})^2}$ as the corresponding sample correlation coefficient, providing that $\sqrt{n}(r_n-\rho)\stackrel{d}{\longrightarrow} \mathcal{N}(0,(1-\rho^2)^2)$.

(a) For $\rho \neq 0$, please find the limiting distribution of

$$\sqrt{n}\Big(\frac{1}{2}\log(\frac{1+r_n}{1-r_n})-\frac{1}{2}\log(\frac{1+\rho}{1-\rho})\Big)\stackrel{d}{\longrightarrow}?$$

as $n \to \infty$.

(b) Let $g(\rho) := (\exp(\rho) + \exp(-\rho))/2$. For $\rho = 0$, please find the limiting distribution of

$$2n[g(r_n) - g(\rho)] \xrightarrow{d} ?$$

as $n \to \infty$.

Solution:

- (a) $\sqrt{\mathfrak{n}}\left(\frac{1}{2}\log(\frac{1+r_n}{1-r_n})-\frac{1}{2}\log(\frac{1+\rho}{1-\rho})\right)\stackrel{\mathbf{d}}{\longrightarrow}\mathfrak{N}(0,1)$ as $\mathfrak{n}\to\infty$, by the first-order delta method.
- (b) By the second-order delta method, you can obtain that $2n[g(r_n)-g(0)] \xrightarrow{d} \chi^2(1)$, as $n \to \infty$.

Problem 5.

Let $(\xi_n)_{n\geqslant 1}$ be independent and identically distributed with uniform distribution U[0,1], and $(Y_i)_{i\geqslant 1}$ be independent and identically exponential distributed, $I\!P(Y_1>y)=\exp(-\lambda y)I_{(0,\infty)}(y)$. Let $\xi_{(1)}\leqslant \xi_{(2)}\leqslant \ldots\leqslant \xi_{(n)}$ be the order statistics of the random sample (ξ_1,\ldots,ξ_n) , and $Y_{(1)}\leqslant Y_{(2)}\leqslant \ldots\leqslant Y_{(n)}$ be the order statistics of the random sample (Y_1,\ldots,Y_n) . We set $\xi_{(0)}=Y_{(0)}=0$.

(a) Define $X_n := (\prod_{i=1}^n \xi_i)^{-1/n}$. Show that

$$\sqrt{n}(X_n-e) \stackrel{d}{\longrightarrow} \mathfrak{N}(0,e^2), \ \mathrm{as} \ n \to \infty.$$

- (b) Given $T_k := Y_1 + \ldots + Y_k$, show that the random vectors $(T_1/T_{n+1}, \ldots, T_n/T_{n+1})$ and $(\xi_{(1)}, \ldots, \xi_{(n)})$ have the same distribution.
- (c) Let $D_i := (n-i+1)(Y_{(i)}-Y_{(i-1)})$, $i=1,\ldots,n$. Show that D_1,D_2,\ldots,D_n are independent, and D_i and Y_i have the same distribution, $i=1,\ldots,n$.
- (d) Let $R_n := \xi_{(n)} \xi_{(1)}$ be the range of the random sample (ξ_1, \dots, ξ_n) . What is the distribution of R_n ? What is the **limiting** distribution of $2n(1 R_n)$?
- (e) Let $V_n := (\xi_{(1)} + \xi_{(n)})/2$, what is the conditional distribution of $V_n | R_n = r$?
- (f) If i < j, find an expression for the conditional density of $\xi_{(j)}$ given $\xi_{(i)}$.

Solution:

(a) Let $Z_i := -\log \xi_i$, which follows the exponential distribution with $\mathbb{E} Z_1 = 1$ and $\operatorname{Var}(Z_1) = 1$. Define $\bar{Z}_n := \sum_{i=1}^n Z_i/n$. By CLT,

$$\sqrt{n}(\bar{Z}_n-1) \xrightarrow{d} \mathcal{N}(0,1)$$
, as $n \to \infty$.

Let $g(\theta) := \exp(\theta)$, with $g'(\theta) = \exp(\theta)$. Then, $X_n := (\prod_{i=1}^n \xi_i)^{-1/n} = g(\bar{Z}_n)$, by delta method, we have

$$\begin{split} \sqrt{n}(X_n-e) &= \sqrt{n}(g(\bar{Z}_n)-g(1)) \stackrel{d}{\longrightarrow} \mathcal{N}(0,g'(1)^2) \\ &\stackrel{\underline{d}}{=} \mathcal{N}(0,e^2), \text{ as } n \to \infty. \end{split}$$

(b) First note that the joint density of $(\xi_{(1)}, \dots, \xi_{(n)})$ is

$$f_{\xi_{(1)},...,\xi_{(n)}}(x_1,...,x_n) = n!I(0 < x_1 < ... < x_n < 1),$$

and the joint density of (Y_1, \ldots, Y_n) is

$$f_{Y_1,\ldots,Y_n}(y_1,\ldots,y_n) = \lambda^n e^{-\lambda \sum_{i=1}^n y_i} I(0 < y_1,\ldots,y_n < \infty).$$

Since that $Y_k = T_k - T_{k-1}$, k = 1, ..., n + 1, $T_0 = 0$,

$$\begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ \vdots \\ Y_{n+1} \end{pmatrix} \begin{pmatrix} 1 & & & & \\ -1 & 1 & & & \\ 0 & -1 & 1 & & \\ \vdots & 0 & -1 & 1 & \\ 0 & 0 & \cdots & -1 & 1 \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \\ \vdots \\ \vdots \\ T_{n+1} \end{pmatrix},$$

we have the joint density of (T_1, \ldots, T_{n+1}) as

$$g_{T_1,\dots,T_{n+1}}(t_1,\dots,t_{n+1}) = f_{Y_1,\dots,Y_{n+1}}(y_1,\dots,y_{n+1})|J| = \lambda^{n+1}e^{-\lambda t_{n+1}},$$

in which the Jacobian determinant $J:=|\vartheta(y_1,\ldots,y_{n+1})/\vartheta(t_1,\ldots,t_{n+1})|=1.$ Similarly, let $U_k:=T_k/T_{n+1},\ k=1,\ldots,n$, we have the joint density of (U_1,\ldots,U_n,T_{n+1}) as

$$h_{U_1,\dots,U_n,T_{n+1}}(u_1,\dots,u_n,t_{n+1}) = g_{T_1,\dots,T_{n+1}}(t_1,\dots,t_{n+1})|J| = \lambda^{n+1}e^{-\lambda t_{n+1}}t_{n+1}^n,$$

where

$$\begin{split} J &:= |\frac{\vartheta(t_1, \dots, t_{n+1})}{\vartheta(u_1, \dots, u_n, t_{n+1})}| \\ &= \det \begin{pmatrix} t_{n+1} & 0 & & u_1 \\ 0 & t_{n+1} & & u_2 \\ & & \ddots & 0 & \vdots \\ \vdots & & & t_{n+1} & u_n \\ 0 & \cdots & & 0 & 1 \end{pmatrix} = t_{n+1}^n, \end{split}$$

then

$$\begin{split} h_{U_1,\dots,U_n}(u_1,\dots,u_n) &= n! \int_0^\infty \frac{\lambda^{n+1}t_{n+1}^n}{n!} e^{-\lambda t_{n+1}} dt_{n+1} \\ &= n! \int_0^\infty f_{T_{n+1}}(t_{n+1}) dt_{n+1} \\ &= n!, \ 0 < u_1 < \dots < u_n < 1. \end{split}$$

Thus, $(U_1, \ldots, U_n) \stackrel{d}{=} (\xi_{(1)}, \ldots, \xi_{(n)}).$

(c) The joint density of $(Y_{(1)},\dots,Y_{(n)})$ is

$$\mathsf{f}_{\mathsf{Y}_{(1)}, \dots, \mathsf{Y}_{(n)}}(s_1, \dots, s_n) = n! \lambda^n \exp(-\lambda \sum_{i=1}^n s_i) I(0 < s_1 < s_2 < \dots < s_n < \infty).$$

Let $\boldsymbol{D} := (D_1, \dots, D_n)^\top$ and $\boldsymbol{Y} := (Y_{(1)}, \dots, Y_{(n)})^\top,$

$$\mathbf{D} = A\mathbf{Y}$$
.

whose

$$A = \begin{pmatrix} n \\ -(n-1) & (n-1) \\ 0 & -(n-2) & (n-2) \\ \vdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix}.$$

Since that $D_1 + \ldots + D_n = Y_{(1)} + \ldots + Y_{(n)}$, we have the joint density of (D_1, \ldots, D_n) is, with the Jacobian

 $\mathrm{determinant}\ J:=|\vartheta(s_1,\ldots,s_n)/\vartheta(d_1,\ldots,d_n)|=|A|^{-1}=1/n!,$

$$\begin{split} g_{D_1,\dots,D_n}(d_1,\dots,d_n) &= f(s_1,\dots,s_n)|J| \\ &= \lambda^n \exp(-\lambda \sum_{i=1}^n d_i) \\ &= (\lambda \exp(-\lambda d_1))(\lambda \exp(-\lambda d_2))\dots(\lambda \exp(-\lambda d_n)) \\ &=: g(d_1)\dots g(d_n). \end{split}$$

Hence, D_i are i.i.d. exponentially distributed as well as Y_i , $i=1,\ldots,n$.

(d) The density of R_n is

$$f_{R_n}(r) = n(n-1)r^{(n-2)}(1-r)I(0 < r < 1),$$

and then you can obtain the density of $2n(1-R_n)$ is,

$$\begin{split} h(r) &= \frac{n-1}{4n} r (1-r/2n)^{(n-2)} \mathbf{I}(0 < r < 2n) \\ &\to \frac{1}{4} r e^{-r/2} \mathbf{I}_{(0,\infty)}(r), \text{ as } n \to \infty, \end{split}$$

since $\lim_{n\to\infty} (1-r/2n)^{(n-2)} = \exp(-r/2)$. So, $2n(1-R_n) \xrightarrow{d} \chi^2(4)$, as $n\to\infty$. Alternatively, you can go another way. since that

$$\begin{split} \mathbb{P}(n\xi_{(1)} > x, n(1 - \xi_{(n)}) > y) &= (1 - y/n - x/n)^n \\ &\to \exp(-(x + y)) \\ &= \exp(-x) \exp(-y), \ x, y > 0, \ \text{as} \ n \to \infty, \end{split}$$

which implies that

$$\begin{pmatrix} n\xi_{(1)} \\ n(1-\xi_{(n)}) \end{pmatrix} \xrightarrow{d} \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix},$$

where Z_1, Z_2 both follow the standard exponential distribution with unit mean. Then,

$$2\mathfrak{n}(1-\mathsf{R}_\mathfrak{n})=2\Big[\mathfrak{n}(1-\xi_{(\mathfrak{n})})+\mathfrak{n}\xi_{(1)}\Big]\stackrel{d}{\longrightarrow}\chi^2(4), \text{ as }\mathfrak{n}\to\infty.$$

(e) Following Example 5.4.7., you can calculate the joint density of (V_n, R_n) is

$$f_{V_n,R_n}(\nu,r) = n(n-1)r^{(n-2)}, \ 0 < r < 1, \ r/2 < \nu < 1 - r/2.$$

Then the conditional density of $V_n|R_n=r$ is obtained as

$$f_{V_n|R_n=r}(\nu|r) = \frac{n(n-1)r^{(n-2)}}{n(n-1)r^{(n-2)}(1-r)} = \frac{1}{1-r}I(r/2 < \nu < 1-r/2).$$

$$f_{\xi_{(j)}|\xi_{(i)}}(s|t) = \frac{(n-i)!}{(j-i-1)!(n-j)!} \Big[\frac{s-t}{1-t}\Big]^{(j-i-1)} \frac{1}{1-t} \Big[\frac{1-s}{1-t}\Big]^{n-j} I(0 < t < s \leqslant 1).$$

Problem 6.

 $Textbook\ Exercises:\ 5.3,\ 5.6,\ 5.12,\ 5.23,\ 5.24,\ 5.36,\ 5.41,\ 5.44.$