Advanced Mathematical Statistics (I), 2022 Assignment 4

Due: 12/31 23:59

Problem 1.

(a) Let ( 51)1<1<n be a random sample with finite means and variances, and IE(&; ') exists, does
Mty & 1)t converge almost surely? If so, to what?
(b) Consider En is a random variable from the binomial distribution Bin(n,0), where 6 € (0,1).
Let

log(&n/m), &n 2>1

]-7 Esn =0.

Y =
Show that Y;, converges to log 8 almost surely, and find the limiting distribution of

V(Yo — log 8) -7

(c) Let (&i)1<icn be arandom sample from the uniform distribution on the interval (6—1/2,0+1/2),
where 0 € IR is unknown. Let X(y) be the kth order statistic of (&;)1<i<n. Show that (X(1)+X))/2
converges to 0 almost surely.

Solution:

a) Yes. By strong law of large numbers T im1 6y — i ), and by continuous map-
Yes. B law of 1 b SLLN Ly eSS EEY, and b i
ping theorem (CMT), we have (n=t Y ' & 1)~ ! as, IE(ffl)_l.

1

(b) Since that &, can be decomposed by Z] 1 Xj, where (X;j) are i.i.d. distributed with IP(X; =1) =6
and IP(X; = 0) = 1 — 0. By SLLN,

En/m = (En/M)L(En #0) + (En/)I(En = 0) FH 0 +0 =0, as n — oo;
Then, the desired result follows from the CMT immediately by the continuity of the log function on (0, co0),
Yn a5 log 0, as n — oo.
By CLT, and the delta-method with g(t) =logt and g’(t) =t~ !,

Vn(Yn —log6) = vn(log(&n/m)I(En # 0) — log 6)

4, N(0,g'(0)20(1 — 0)) &

N(0,(1—-0)/6), as n — oo.
(¢) For given any € > 0,
P(IX1)—(0—-1/2)| >€e) =P(X1)>e+(0—-1/2))=P(X; >e+0-1/2)" =(1—¢€)",

and similarly,
P(Xmy—(0+1/2) >€e)=(1—€)".



Since that Y *°_, (1 — €)™ < oo, we have that X(1) =5 (6 —1/2) and X () = (6 +1/2) by Borel-Cantelli

lemma. Thus, (X(1) + X(n))/2 =% 0 by CMT.

O

Problem 2.

Let (Yn)n>1 be a sequence of independent and identically distributed random variables with mean
IEY; = p and finite variances Var(Y;) = 2. Define (X )n>2 as

Yo+ YoY3 4+ 4+ Y Y + YY)
n b

Xn :

n=23,...
Show that X, converges to p? in probability.

Solution: Let Z; :=Y;Yi 1, i=1,...,n—1, Z, :=Y,Y;. Then,

Since that IEZ; = EY; EYy = 2, Var(Z;) = E(Y?Y2) — (IEY;Ys)? = o + 20%u?, and cov(Zy,Z3) =
IE[YlY%Yﬂ — IE[YlYQ] IE[YQY?,] = HQ(HQ =+ 62) — |.L4 = },I.20"2.

EX, — EZi+EZy;+.. +EZ, 1 +1EZ,

and

1
Var(Xn) = = nVar(Z;) + 2 Zcov(ZiZj)}
i<
n(o* +20%p?) + 2np?o?  4p?o? 4 ot

n2 N n

— 0, asn — oo.

Then, X,, — p? in mean-squares sense, so that X, L u?, as n — oo. (Or, using Chebyshev’s inequality
directly.)
O

Problem 3.

Consider an intercept-only model,
Yyi = u+ei, e ~iid N(0,0%), o >0.

Define the sample skewness statistic as

= 1 & /6:\3

Ski= = (7) :

OB
1=

where é; :=y; —y,i=1,...,nand 6% := Y I | é2/n. Please show that

=il =

VnSk i) N(0,6), as 1. — co.



Solution: WLOG, assume o > 0.

~2

62=) eéi/n

M:

i=1

ef/n+ 2Ze1 & ei)/n+Z(é1

/n72Zely u/n+Zy nk

Il
I\’]: I I\/]:

,.
Il
—

1>o2

by the facts that ) ;" ei/n LN Ee; =0, Y ,e?/n LN Ee? = 02, and (§ — ) P, 0 from WLLN.

Then, 63 = (62)3/2 BN (02)73/2 = 073 by continuous mapping theorem (CMT), and \/ﬁﬁ =

o3 ed/vm) P, o3, el/ym). It leaves to show that ) [~ é3/\/m i> N(0,609), so that
the desired result follows by Slutsky’s theorem.

Claim. ) ", 1/\f—ﬂNOG(Iﬁ)

Since that é; = e; + (é; —ei) and &; — ey = —(y — u), then

Zé Zelg/f+3zel €i — ei)/\/ﬁ'i_SZei( l_el /\/7+Z _el \/‘H
i=1 i=1

i=1

Z B/ (D + (ID) + (110,

where (1) P, -3 ', 0%ei/y/n since

n

> ele—ed/Vn=—()_et/m)|Valg— )]
i=1

i=1
~()_et/m[vnlY_fyi—w/m)]
i=1

i=1
—()_ei/m)) e/vn
i=1 i=1
—a? Z ei/vn
i=1

by Y, e/n 2, IE e = 0 from WLLN;
(I1) L 0 since

Y eile—e)?/ V=) e/ V)G —w? 0

i=1 i=1
by (g —u) l) 0 from WLLN, and } ", ei/y/n i> N(0, 02) from CLT; and similarly,
(I11) 1> 0 since

Y (e e/ =[vag—w)] (- w/va o
i=1



by 1/\/ = 0, (§ — ) =2+ 0 from WLLN, and vA(g — 1) -% N(0, 02) from CLT. Then,

i f/\f ie —30%ei)/Vn.

Also,
Z(ef —30%e;)/Vn g N(0, 669),
i=1
since IE[e — 30%e;] = 0, and by CLT,
= d
Z(e? - 30-2e1'.)/\/H — N(Oa v)7
i=1

where V = Var[e? — 30%e;] = Eel — 602 Eef + 90* E e? = 150° — 180° + 90° = 60°. Hence,
. d
> &l/vm == N(0,60°).
i=1
We end the proof of Claim. Next, by Slutsky’s theorem,

Sk =673() & /v
i=1

d

4, 53800, 60%) 4

N(0,6), as n — oo.

We are done.
O

Problem 4.

Let {(Xi, Yi)}icign be a random sample from a bivariate normal density with correlation coefficient
€ [0,1). We denote T, := Y I | (Xi — X)(Yi — YV)//2 -, (Xi — X)2 Z?:l(Yi —Y)2 as the corre-

sponding sample correlation coefficient, prov1d1ng that vn(rn — p) —> N(0, (1 —p?)?).

(a) For p # 0, please find the limiting distribution of

1 1471, 1 1+p d7
\/ﬁ(img(l_rn) 51og(71_p))ﬁ.

as n — oo.
(b) Let g(p) := (exp(p) + exp(—p))/2. For p =0, please find the limiting distribution of

onlg(rn) — g(p)] L7

as M — oQ.

Solution:

() v (§ log(4

:‘:) log(¥)) i> N(0,1) as n — oo, by the first-order delta method.

(b) By the second-order delta method, you can obtain that 2n[g(r,) — g(0)] i) x2(1), as n — oo.


xchen


Problem 5.

Let (&n)n>1 be independent and identically distributed with uniform distribution U0, 1], and
(Yi)i>1 be independent and identically exponential distributed, IP(Y: > y) = exp(—Ay)I(0.c0)(Y).

Let &1) < &2) < ... < &y be the order statistics of the random sample (&;,...,&,), and
Ya) < Y2) < ... < Y be the order statistics of the random sample (Yy,...,Yn). We set
&(0) = Y(o) = 0.

0
(a) Define Xy, := (I, &)~ /™. Show that

VX —e) -5 N(0, €2), as . — oo.

(b) Given Ty = Y; + ... + Yx, show that the random vectors (Ti/Tnt1,..., In/Tny1) and
(&)s- -+, &m)) have the same distribution.

(c) Let Dy := (m —1i+1)(Y4) — Ya—1)), i = 1,...,n. Show that D;,Ds,..., Dy are independent,
and D; and Y; have the same distribution, i =1,...,n.

(d) Let Ry, := &) — &(1) be the range of the random sample (&;1,...,&,). What is the distribution
of R,,? What is the limiting distribution of 2n(1 — Ry)?

(e) Let Vi == (&1) + &(n))/2, what is the conditional distribution of V;|Ry =17

(f) If i < j, find an expression for the conditional density of &) given &).

Solution:

(a) Let Z; := —log&;, which follows the exponential distribution with IE Z; =1 and Var(Z;) = 1. Define
Z,:=3Y1,Zi/n By CLT,

VA(Zn —1) L N(0,1), as 1 — oo,
Let g(0) := exp(0), with g’(0) = exp(0). Then, Xy, := (M, &;)~/™ = g(Z,), by delta method, we have
ViXn —€) = Va(g(Za) — g(1)) - N(0,¢'(1)%)
4 N(0,e?), as n — oo.
(b) First note that the joint density of (&1y,...,&m)) is
fe )t (X, xn) =00 <xp <00 <xp < 1),
and the joint density of (Y1,...,Yyn) is
fy, v (UL, ..., yn) = 7\“677\2{;19"1(0 < Yiy.-+,Yn < 00).

Since that Yy = The — Tx_1, k=1,....n+1, Tp =0,

Y1 1 T1
Y2 —1 1 T2
0 -1 1 ,
: 0 -1 1 :
Yn+1 0 0 -1 1 Tn+1



we have the joint density of (Ty,..., Th41) as

ng,...,TnH(tla cootng) = Y Yo (yl, cee ,yn+1)|]| =

in which the Jacobian determinant | :=[0(y1,...,Yn+1)/0(t1,...,th+1)] = 1.
Similarly, let Uy := Ty /Thi1, k =1,..., 1, we have the joint density of (Uy,..

}\Tl+1 ef)\t“ 41 tn

n+1_,—At
}\ e n+1’

U, Tayr) as

n+1»

hu17~--7un;Tn+1 (u17 R 7un? tﬂ+1) = ng,.A.,Tn+1 (t17 AR 7t11+1)|ﬂ —
where
o a(tl,...,tn+1)
J =
a(uh LR 7uﬂatn+1)
tn+1 0 Uq
0 tnyr Us
= det .0 Sl =t
t'rlJrl Un
0 0 1
then
o] }\nJrltn
huy,u, (U, un ) = n!J %6_}“"“ dtnig
0 .

o0
=n!j Fro s () At
0

=nl 0<uy; <...<u, <l

d
Thus, (Uy,...,Un) = (&), -0 Emy)-

(c) The joint density of (Y(1),...,Y(m)) is

n

fY(l),...,Y(“) (Sl, RN Sn) =nlA" exp(—AZ Si)I(O <81 <S89 < ..

i=1
Let D := (Dq,..., l)n)T and Y := (Y(l), . ,Y(n))T,
D =AY,
whose
n
—-n—1) (-1
0 —-n-2) (n—2)
A =
0 0
0 0 0 -1 1

Since that Dy +...+ Dy = Y(1)+...4Y(n), we have the joint density of (Dy,...

. < Sp < 00).

, Dy ) is, with the Jacobian



determinant J := [9(s1,...,84)/0(d1,...,dn)| = A7 =1/n!,
gD,,...D, (d1, ..., dn) =1(s1,...,sa)l]l
n
=A" exp(—AZ dyi)
i=1
= (Aexp(—Ad1))(Aexp(—Adz)) ... (Aexp(—Adn))
=:g(dy)...g(dn).
Hence, D; are i.i.d. exponentially distributed as well as Yi, i=1,...,n.
(d) The density of Ry, is
fr, (1) =nmn—1)r"2 1 -1I0<r<1),
and then you can obtain the density of 2n(1 — R,,) is,

h(r) = n4:11T(1 —1/2n) "0 < 7 < 2n)

1
— Zre_r/gl(om)(r), as n — oo,

since limp 00 (1 —1/2n)(™2) = exp(—1/2). So, 2n(1 — Ry,) 4, x2(4), as n — oo.
Alternatively, you can go another way. since that

P&y >x,n(l—&q) >y) =1 —-y/mn—x/n)"
— exp(—(x+y))

= exp(—x) exp(—y), x,y >0, as n — oo,

né& ) i} Z;
n(l—§&m)) Zy)’

where Z1,Z5 both follow the standard exponential distribution with unit mean. Then,

which implies that

(1 —R,) =2 [n(1 — &) +nam} 453204, asn - oo.
(e) Following Example 5.4.7., you can calculate the joint density of (Vy,,Ry) is

fv, R, (V,T) =n(n— Driv2 0<r<1, r/2<v<1—1/2.
Then the conditional density of V,|R,, = 1 is obtained as

nn—1)rn=-2)
nn—1)rn=2)(1 —1)

1
fv, R.=r (VIT) = =1 7TI(r/2 <v<1l-—1/2).

(n—1)! s—t}(i*ifl) 1 [1—3

j—i—l)!(n—j)!{l—t T—tli—t

fﬁ(j)lﬁ(i)(sm = ( 1t

n-j
] [0<t<s<1)



Problem 6.

Textbook Exercises: 5.3, 5.6, 5.12, 5.23, 5.24, 5.36, 5.41, 5.44.
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